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ABSTRACT: This started out as a back of the envelope (BOE) calculation

to see if a phase shift can be obtained with trapped modes for measuring electron

cloud density. Unfortunately, the BOE has grown to more than ten pages! Since

this is a BOE, I am not rigourous and have put in caveats in the calculation.

However, I believe the final result is correct that there is an amplification factor of

2R/1 − R2 where R is the reflection coefficient of the phase shift. S. de Santis of

LBNL1 has actually measured a phase shift with a standing wave and so at least

to zeroth order, this method works.



THEORY

Instead of using a travelling wave mode which is above cut off for measuring the phase

shift from the electron cloud density, I will see if it is possible to measure the phase

shift with a trapped mode instead. The advantage is that the trapped mode will have

a larger phase shift than a travelling mode because the trapped mode will traverse the

electron cloud more than once, but because of the low Q of the trapped mode, I’m not

sure whether it is better than the “pass through once” travelling wave mode method. So

here is the “back of the envelope” calculation to see if this method can even work.

Let me assume that I can calculate the wave in the “cavity” as a superposition of plane

waves going in the +z and −z direction. The goal is then to calculate the amplitude and

phase of each plane wave and then sum them all. See Figure 1 shows the idea. Note:

the boundary conditions must be such that L is a multiple of the excitation

wavelength or else the wave is not sustained in the “cavity”, i.e. kL = 2πn

where n ∈ Z. Technically, there is a phase which is the cavity phase response

which is NON-ZERO, but for simplicity I am setting this to zero, i.e. For a real

measurement, the phase that is shifted is the difference between zero electron

cloud and with electron cloud.

Let me assume that the source generates a plane wave going in the +z direction ψ→,1

ψ→,1(t, z) = Aei(ωt−kz) (1)

After passing through the electron cloud, the plane wave gets phase shifted by the amount

φ at z = L and its amplitude is reduced by e−αL because of the finite surface conducivity

of the waveguide. It is reflected at this location

ψ←,1(t, L) = Ae−αLReiφei(ωt+kL) (2)
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Figure 1 The “cavity” is formed with one large beam pipe con-
nected to two smaller beam pipes at z = 0 and z = L. The impedances
are ZC for the “cavity” and ZO for the smaller pipes. ψ→,n and ψ←,n
are the plane waves which are propagating with attenuation in the
“cavity” which I will sum to get the measured ψ. For the waves to be
trapped, the frequency of the wave must be above the cutoff in the
“cavity” but below the smaller pipes.

3



where R ∈ C is the reflection coefficient. Once this plane wave gets back to z = 0, it gets

phase shifted by φ from the electron cloud and attenuated again by e−αL

ψ←,1(t, 0) = Ae−2αLRei2φeiωt (3)

Therefore, I can superposition these two forward and backward plane waves at z = 0 to

get
ψ1 = ψ→,1 + ψ←,1

= A
(

1 + e−2αLRei2φ
)
eiωt



 (4)

To construct the next +z going plane wave, I reflect the ψ←,1 so that it now propagates

to the right, taking into account the reflection coefficient

ψ→,2(t, z) = Ae−α(2L+z)R2ei2φei(ωt−kz) (5)

Once this gets to z = L, it has gained phase through the electron cloud, and once again is

reflected at z = L. The reflected plane wave arising from ψ→,2 at z = L is

ψ←,2 = Ae−3αLR3ei3φei(ωt+kL) (6)

and then when it gets to z = 0, I add the phase from the electron cloud to get

ψ←,2 = Ae−4αLR3ei4φeiωt (6)

Summing the forward and reflected waves from this turn, I get

ψ2 = ψ→,2 + ψ←,2

= Ae−2αLR2ei2φ
(

1 + e−2αLRei2φ
)
eiωt



 (7)

And again, ψ→,3 is created by the reflection of ψ←,2

ψ→,3(t, z) = Ae−α(4L+z)R4ei4φei(ωt−kz) (8)

And once more reflecting at z = L and gaining phase from the electron cloud, I get

ψ3 = Ae−4αLR4ei4φ
(

1 + e−2αLRei2φ
)
eiωt (9)

4



and ad infinitum, I can construct all the plane waves at z = 0 and z = L which together

form the trapped wave in the “cavity”.

Therefore the trapped wave measured at z = 0 is found by summing all the ψ’s to get

ψ = A
(

1 + e−2αLRei2φ
) N∑

k=0

e−2kαLR2kei2kφeiωt

= A
(

1 + e−2αLRei2φ
)1− e−2(N+1)αLR2(N+1)ei2(N+1)φ

1− e−2αLR2ei2φ
eiωt





(10)

In order to extract out the phase shift from the electron cloud, I have to write ψ in phase

amplitude form, but R is a complex number and so I really need to know it.

The characteristic impedance of a circular waveguide is given by

ZTM =
β

ωε
ZTE =

ωµ

β
(11)

where β = k

√
1−

(
ωcm,n
ω

)2
and k2 = ω2µε. What I want is a travelling wave in the

“cavity” which means the frequency must be above cutoff in it, while at the ends at z = 0

and z = L, the frequency is below cutoff for there to be a reflection. This means that Z is

real in the “cavity” and is purely imaginary outside. See Figure 1. Thus

R =
ZO − ZC
ZO + ZC

∈ C (12)

with ZO purely imaginary and ZC a real number. (Note: I have checked may sources that

(12) is indeed correct, see Harrington pg. 55, Ramo et al pg. 220, Wikipedia and even

a demo http://www.bg.ic.ac.uk/research/intro to wia/wia-6-1.html. However, it

bothers me that R is not negative for the second case that I am considering because

does this mean that there isn’t a standing wave in the cavity? Pain pg. 112 gives (ZC −
ZO)/(ZC + ZO) which seems to make more sense, but nobody else does).
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Reflection Coefficent

Let me assume that the mode that will be used is TE11. The cut off frequency ωc11 is

ωc11 = 2π × 0.293c
a

(13)

because c = 1/
√
µε and a is the radius of the waveguide. From (11)

ZTE =
η√

1−
(
ωc11
ω

)2
(14)

where η =
√
µ/ε = 377 Ω is the impedance of free space. Putting in some numbers, let’s

say I have a 6” OD waveguide (or 7.62 cm radius) connected to a 10 cm OD waveguide

(or 5 cm radius), the cutoff frequencies are:

ωc11(a = 7.62) = 2π × (1.15× 109) s−1 for the “cavity”

ωc11(a = 5) = 2π × (1.76× 109) s−1 for the pipes



 (15)

So for this method to work, I have to excite above ωc11(a = 7.62) to get the travelling

waves going but below ωc11(a = 5) to get the waves trapped.

Therefore, by using (12) and from the cutoff frequencies calculated above, I can calcu-

late R to be

R(f) =

√
1− 1.3225

f2 −
√

1− 3.0976
f2

√
1− 1.3225

f2 +
√

1− 3.0976
f2

= exp


i2 tan−1



√

3.0976
f2 − 1

√
1− 1.3225

f2




 ≡ eiθR(f) (16)

for the range 1.15 GHz < f < 1.76 GHz. The reason why |R| = 1 is because ZC is real

and ZO is purely imaginary. In fact, I can plot θR for a = 7.62 cm “cavity” and 5 cm

pipes and show it in Figure 2.

Substituting (16) into (10), I get

ψ = A
(

1 + e−2αLeiθRei2φ
)1− e−2(N+1)αLei2(N+1)θRei2(N+1)φ

1− e−2αLei2θRei2φ
eiωt (17)

6



Cutoff freq. of pipe

Cut off freq. of ``cavity''

1.3 1.4 1.5 1.6 1.7
FrequencyHGHzL

-150

-100

-50

QR HdegreesL

Figure 2 This plot shows θR between the cutoff frequencies of the
“cavity” and the pipe.

Attenuation Constant α

The attenuation constant α for TE11 is given by the formula

α =
Rs
aη

(ωc
ω

)2 + 0.420√
1− (ωcω

)2 (18)

where the impedance of free space η =
√
µ/ε = 377 Ω and Rs is the surface resistivity

which is proportional to
√
ω and is given by

Rs =
√
ωµ

2σ
(19)

where σ is the bulk resistivity. For stainless steel σ ∼ 1.3× 106 (Ωm)−1. This means that

Rs in ohms is

Rs = 7× 10−7√ω = 4.4× 10−6√f (20)

which can be compared to copper which is (2.6 × 10−7√f) Ω. Surface resistivity of steel

is pretty lousy!
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Substituting Rs for stainless steel into (13) for a = 7.62 cm of the “cavity”, I have

α =
2.03× 10−9 + 6.43× 10−10f2

√
1 + 1.3225/f2f3/2

(21)

for f in GHz. When I evaluate α at just below the cutoff frequency of the pipe at 1.755 GHz,

I get α = 2.3 × 10−9 cm−1, which is not very large and so after 15 × L = 1500 cm for

L = 100 cm, e−α15L ≈ 1 but less than one.

Calculating ψ

So, for N → ∞, I have e−2(N+1)αL → 0 and e−2αL ≈ 1 for stainless steel and so ψ

from (17) is

ψ = A

(
1 + eiθRei2φ

1− ei2θRei2φ

)
eiωt (22)

and R(1.755 GHz) = e−0.2i or θR ≈ −11◦. This angle is small enough so that the term in

the parenthesis can be approximated as

1 + eiθRei2φ

1− ei2θRei2φ ≈
1 + (1 + iθR)(1 + i2φ)
1− (1 + i2θR)(1 + i2φ)

≈ 2 + i(θR + 2φ)
−2i(θR + φ)

(23)

The argument of the above is

Arg
(

2 + i(θR + 2φ)
−2i(θR + φ)

)
≈ θR

2
+ φ− sgn(θR + φ)

π

2
(24)

which means that there is NO amplification whatsoever.

When I try other values of θR like for θR = π/2, I have

1 + eiθRei2φ

1− ei2θRei2φ ≈
1 + i(1 + i2φ)
1 + (1 + i2φ)

=
(1− 2φ) + i

2 + i2φ
(25)

The argument of the above is

Arg
(

1 + i(1 + i2φ)
1 + (1 + i2φ)

)
= tan−1

(
1

1− 2φ

)
− tan−1 φ

≈ tan−1(1 + 2φ)− φ

=
π

4
+ φ− φ = π/4
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which again shows that having an R = eiθR does NOT work!

A Second Possibility

Therefore, a purely trapped mode will not work. Suppose instead, I have a travelling

mode in both the “cavity” and the pipe, then R will be completely real because ZTE is

real from (14).

The reflection coefficient R is

R(f) =

√
1− 1.3225

f2 −
√

1− 3.0976
f2

√
1− 1.3225

f2 +
√

1− 3.0976
f2

> 0 ∈ R (26)

for the range f > 1.76 GHz. See Figure 3 which shows the that the R decreases rapidly

as the frequency is increased from the cutoff frequency of the beam pipe.
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Figure 3 This plot shows R for frequencies above cutoff frequency
of the pipe. R is real and greater than zero and decreases rapidly
away from the cutoff frequency of the pipe.

When I apply the approximation that e−2αL ≈ 1 to ψ in (10), I have

ψ = A

(
1 +Rei2φ

1−R2ei2φ

)
eiωt (27)
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Concentrating only on the term in the parenthesis, I have

1 +Rei2φ = (1 +R cos 2φ) + iR sin 2φ

=
√

(1 +R cos 2φ)2 +R2 sin2 2φ exp
[
tan−1

(
R sin 2φ

1 +R cos 2φ

)]

1−R2ei2φ = (1−R2 cos 2φ)− iR2 sin 2φ

=
√

(1−R2 cos 2φ)2 +R4 sin2 2φ exp
[
tan−1

( −R2 sin 2φ
1−R2 cos 2φ

)]





(28)

Therefore, the phase shift ∆φ is

∆φ = tan−1
(

R sin 2φ
1 +R cos 2φ

)
+ tan−1

(
R2 sin 2φ

1−R2 cos 2φ

)

= tan−1
[

R(1 +R) sin 2φ
(1−R)(1 +R+R2 +R cos 2φ)

]

≈ 2R
1−R2φ for ∆φ� 1





(29)

Clearly, the “amplification factor” is 2R/1−R2 and will enhance the electron cloud phase

shift φ. NOTE: This approximation only true for very small phase shifts � 1◦.

I can calculate the required R for the requirement that ∆φ = 15φ because I need 15×
for a 1 m long beam pipe because I know I can see a phase shift for 15 m long beam pipe,

I have for φ� 1

15φ =
2R

1−R2φ ⇒ R = 0.94 (30)

And with the above, I can calculate the required excitation for the aboveR to be 1.76048 GHz

which is just 480 kHz above the cutoff frequency of the pipe.
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